
Abstract

Convolutional networks and traditional stereo
matching algorithms are both state-of-the-art methods,
which can sometimes be combined to achieve more
accurate results. We implement a Siamese network that
uses the inner product of the output of two branches as
the matching cost, and show their favorable
performance, compared to traditional algorithms with
a matching cost of absolute difference. Besides this
first step of match cost computation, we also
implement a second step of cost aggregation with
average pooling and a third step of disparity
optimization with semi-global matching, which further
improves the accuracy of the computed stereo map. We
also show that by using dilated convolution in the
network architecture, we can achieve comparable
accuracy while greatly improving the computational
efficiency.

1. Introduction

Stereo vision is one of the most important research
topics in computer vision, with its application in
robotics, autonomous driving and augmented reality.
Stereo vision is the extraction of 3D information such
as shapes and appearance from 2D images. It has been
one of the most important topics in the area of
computer vision. A important area of stereo vision is
stereo matching, which is to extract the depth
information from a pair of rectified images taken from
left and right cameras (or eyes). Here we want to
produce the disparity map, encoding the disparity
value, which is the difference in location of the object
in the image of left and right cameras. Assuming a
focal length for the cameras, a camera separation of

, and a disparity of , we can calculate the depth of
the object from:

 (1.1)

Traditional stereo matching algorithms measure the
similarity using the matching cost, usually absolute
difference (AD) or squared difference (SD). More
advanced traditional methods are also being developed

[,]. Like other traditional machine learning 1 2
algorithms, traditional stereo matching algorithms
usually requires manual choice of some parameters. As
the rapid development of deep learning techniques like
convolutional neural network and computer hardware,
many new stereo matching algorithms are developed
which can achieve much better accuracy than
traditional methods. In the meanwhile, traditional
methods are still playing important roles in many
aspects.

In this report, we implement a state-of-art deep
learning stereo matching algorithm, based on a
Siamese network architecture, and compare its
performance with traditional method based on a
matching cost of absolute difference. We evaluate both
the computational efficiency and accuracy quantified
by the three pixel error. For further refinement, we also
utilize average filtering for cost aggregation and semi-
global matching for disparity optimization. The link to
the git repository is https://github.com/harrainy18/
cs231a_project.git.

2. Related work

2.1. Traditional stereo matching algorithm

Traditional stereo matching algorithms includes both
local and global approaches []. The local approach 3
uses sliding window, utilizing a simple matching cost
of absolute difference (AD), squared difference (SD),
normalized cross correlation (NCC), etc. These
algorithms may fail for situations such as repeated
patterns and textureless regions. An example of global
methods is the energy minimization method [], which 4
add smoothness to the cost function, based on the
assumption that adjacent pixels should move about the
same amount. In general, local approaches runs faster
but gives less accuracy than global approaches.

There are generally four steps in a stereo matching
algorithm — matching cost computation, cost
aggregation, disparity computation/optimization, and
disparity refinement [3]. The first and most important
step is matching cost computation. The matching cost
can be computed using AD, SD, NCC, etc. Cost
aggregation can be done using average filtering or
cross based cost aggregation. There are many ways of

f
B d

D = Bf /d

1

Convolutional network for stereo matching and comparison with traditional
methods

Minchuan Zhou
Stanford University
mczhou@stanford.edu

https://github.com/harrainy18/cs231a_project.git
https://github.com/harrainy18/cs231a_project.git

disparity optimization, such as graphic cut, scanline
optimization and semi-global matching []. Finally, the 5
disparity map can be refined to deal with problems
such as invalid matches occlusion. The methods for
disparity refinement include slated plane smoothing
and left-to-right-consistency check.

2.2. Deep learning for stereo matching

CNN advances the development of many aspects of
computer vision, such as image recognition, video
analysis, image segmentation, 3D reconstruction, etc.
Many CNN based stereo matching algorithms are
developed [, ,]. Zbontar and LeCun [6] 6 7 8
Implemented the MC-CNN network to compute the
matching cost for disparity map. The left and right
images are each sent into a CNN, and the outputs are
are concatenated and sent to more layers for further
processing. W. Luo et al. [8] proposed a different
Siamese network architecture. In the model, a Siamese
network is used to extract marginal distributions over
all possible disparities for each pixel and an inner
product layer to connect the two branches of the
network. Using a simple product operation instead of
additional CNN layers, Luo et al. was able to achieve
much faster computation. The matching cost is
computed from the Siamese network, then cost
aggregation is applied by average pooling and further
optimized using semi global block matching (SGM) or/
and slanted plane approach.

3. Approach

3.1. Traditional method

The difference of various stereo matching
algorithms generally lies in how the matching cost is
computed. The matching cost is a function of the pixel
location in the image and disparity ,
where . Here is the maximum
disparity and is the range of all
possible disparities. We use a simple matching cost of
AD in our implementation. We have also tested SD,
which gives similar results to AD. After cost
computation, the disparity map is computed using a
“winner takes all” approach:

 (3.1)

3.2. CNN for stereo matching

We implement the siamese network architecture in
Ref. 8. The architecture of the network, which we
name as “Net1”, is shown in Figure 1, with 9 layers
(). The left and right images are sent to the
same convolutional network, respectively. Then an
inner product is taken for the output from the two
networks to get the cost volume , where

 denotes the parameters of the model.
We use a total of 9 layers in each CNN network. The

kernel size is chosen to be with a stride of 1. The
first three layers we use 32 filters, and for the rest we
use 64 filters for each layer. Batch normalization is
used in each layer to help with the issue of internal
covariate shift that slows down the training process.

(xi, yi) C (xi, yi, d)
d ∈ (−dmax, dmax) dmax

drange = 2dmax + 1

dest(xi, yi) = argmin
d

C (xi, yi, d)

= argmin
d

| IL(xi, yi) − IR(xi + d , yi) |

N = 9

C (xi, yi, d ; Θ)
Θ

5 × 5

2

Figure 1. Architectures of CNN for stereo matching. The number of layers is 9 for Net1 and 5 for Net2. N

Rectified Linear Units (ReLu) are used for all the
layers except for the last layer. We use valid padding in
each layer and the size of the patch is chosen to be the
same as the receptive field so that in the final output,
the size of the patch is 1.

For training the network, we divide the left images
into small patches of size . Assume the
center of the patch is located at , and the ground
truth disparity value is . Since the images are
rectified, the epipolar lines are horizontal so we just
need to search the matched patch along the horizontal
direction. So we can extract a patch of size

 centered at the pixel
 in the right image.

The intuitive choice for the loss function that
quantifies the difference between the probability
distribution from the network output and a target
distribution that peaks at the ground truth disparity
value is a cross-entropy loss function. We use the
cross-entropy loss function with a target distribution:

 (3.2)

where we apply a softmax to the cost function to get
, and the target distribution is

 (3.3)

The target distribution we use is a discrete distribution.
Naturally, we can choose a smooth distribution, for
example a Laplacian distribution or a Gaussian
distribution. Since Laplacian distribution has a less
heavier tail, we use Laplacian in the training.:

 (3.4)

where we choose . We will also test if using
such a target distribution could improve the
performance of training.

To decrease the computational cost, we use another
network architecture that makes use of dilated
convolution. The architecture of the second network
(Net2) is the same as that in Figure 1, with only 5
layers (). We use dilated convolution in the
network [] to increase the receptive field. With only 5 9
layers, we achieve the same receptive field as the
original 9 layer network.

The network is trained using using stochastic
gradient descent back propagation with Adam instead
of AdaGrad in the original paper. AdaGrad decays the

learning rate aggressively because of the growing
denominator, while Adam solves the problem by
decaying the denominator as well. The learning rate is
set to 0.01 first, and then after 24k iterations it is
decreased by a factor of 5 for every 8k iterations [3].

3.3. Cost aggregation and disparity optimization

Cost aggregation and disparity optimization steps
can be used after the cost computation step to improve
the disparity estimation.

The idea is based on the assumption that the depth
and therefore disparity value changes smoothly. We
perform cost aggregation using average pooling, in
order to reduce the noise.

We implement the disparity optimization step using
semi-global matching (SGM). We define an energy
function of the disparity map , adding
smoothness terms that penalize the discontinuity in
disparity between adjacent pixels [6].

 (3.5)

where , and represents neighbors of the
pixel . The penalty for a disparity change of 1 is
and that for a disparity larger than 2 is .

Specifically, we use the matching cost for each
direction to minimize the energy :

 (3.6)

In our implementation of SGM, we use only 4
directions of to perform line optimization. Typically,
8 directions or 16 directions are used for better quality
but with slower computation.

Except for the constant penalty used in Ref. 6, we
can also use a linear penalty term,

 (3.7)

which increases with the magnitude of disparity

npatch × npatch
(xi, yi)

d (xi, yi)

npatch × (npatch + drange)
(xi + d (xi, yi), yi)

L = − ∑
i

ptarget(di)log p (di; Θ)

p (di; Θ)

ptarget(di) =

0.5 if |di − dgt | = 0
0.2 if |di − dgt | = 1
0.05 if |di − dgt | = 2
0 otherwise

ptarget(di) = 1
2b

exp (−
|d − dgt |

b)
b = 1

N = 5

E (D) D

E (D) = ∑
p (C (p, D (p))

+ ∑
q∈Nq

P1{ |D (p) − D (q) | = 1}

+ ∑
q∈Nq

P2{ |D (p) − D (q) | > 1})
p = (x , y) Nq

p P1
P2

r E (D)

Cr(p, d) = C (p, d) − min
k

Cr(p − r, k)

+ min {Cr(p − r, d), Cr(p − r, d − 1) + P1

+Cr(p − r, d + 1) + P1, Cr(p − r, k) + P2}

r

P = τ |D (p) − D (q) |

3

change. We evaluate both the constant and linear SGM
in our experiment.

4. Experiments

4.1. Dataset for training and evaluation

We use the KITTI 2015 data set [], which includes 10
a collection of image pairs (200 training pairs and 200
testing pairs) taken from two video cameras mounted
on the roof of a car. The image pairs are rectified and
the ground truth disparity maps measured using a
rotating laser scanner. In our model, we use a patch
size of , and therefore obtain about 12
million patches for training from 160 training images.
The rest 40 images are used for evaluation of the
model. For training purpose, the patch images are
grouped into mini-batches of 128 patches and sent to
the network. To get a better accuracy, we would like to
use the scene flow dataset [], which has more than 11
39,000 stereo frames in 960x540 pixel resolution. But
due to limited computational resources, it is not
possible for now.

For evaluation of the implemented stereo matching
algorithms, we will follow the 3px error in KITTI 2015
data set: the percentage of bad pixels averaged over all
ground truth pixels whose disparity error is larger than
3px. We compute the 3px error for the 40 validation
images. As noted in the KITTI 2015 dataset, a value of
0 indicates an invalid pixel, so we exclude pixels with
0 value in the evaluation.

4.2. Training time and testing time

A summary of training and testing time is shown in
Table 1. The traditional method does not require
training, while the deep learning models need to be
trained. Since the architecture Net2 has fewer layers
than Net1, the training time of Net2 is half of the
training time for Net1, reduced from 450 ms/step to
220 ms/step.

In testing, the traditional method of matching cost
computation takes 3 times more time than Net1 or
Net2. Most of time is taken in SGM used for disparity
optimization, which takes 100 more time than
traditional cost volume computation. In our
implementation, we use 4 directions of line
optimization. Using 8 directions increase the
computational time by a factor of 6, due to the much
slower speed for diagonal directions.

4.3. Convergence in network training

The loss function decreases with the number of

iterations. As can be seem from Figure 2, the loss
function starts to converge around 20k iterations, for
both two CNN architectures Net1 and Net2. The
convergence curve is quite fuzzy. Increasing the size of
the sample for training would help with this issue.
Throughout this report, we use 50k iterations for
training.

We also investigate using a smooth Laplacian

npatch = 37

4

Table 1. Training and testing time. The testing time for
Net1, Net2 and traditional methods does not include the time

spent on average filling and SGM.

Figure 2. Plot of loss as a function of number of iterations
in training Net1 and Net2.

Training time
(ms/step)

Testing time
(sec)

Net1 450 1.7

Net2 220 1.6

Traditional — 4.7

Average
filtering

— 0.5

SGM — 468

Figure 3. Plot of smoothed and normalized loss as a function
of number of iterations in training Net1 with the discrete and

Laplacian target distribution.

distribution as the target distribution. Figure 3 shows a
comparison of the loss function, which is smoothed
and normalized to the minimum value. It can be seen
that the loss function using a Laplacian target
distribution converges slightly faster than the case with
a discrete target distribution.

4.4.Accuracy of disparity map estimation

We first evaluate our traditional method. An
example of the disparity map estimation is shown in
Figure 4. The disparity map calculated directly using a
matching cost of AD is shown in Figure 4 (d), with a
high 3px error of 50%. The error is reduced to 6.5%
after cost aggregation using average pooling with a
filter size of . The disparity map (Figure 4 (e))
much less noisier, but there is still some discontinuity
in the disparity map. Since SGM adds smoothness to
the disparity, the disparity discontinuity can be reduced
by SGM using constant penalty, which is indeed
observed in Figure 4 (f). With SGM, the error is
reduced to 3.7%. Using SGM with linear penalty, we
get a similar error of 3.6%. We can see that without
cost aggregation and disparity optimization, the raw
disparity map is very noisy and of low accuracy.

Evaluating the performance on real-world data of
KITTI2015 validation set, we find that without further
processing the disparity estimation has very low
accuracy, with an average 3 px error of 81% over the
40 evaluation images. With average filtering with a
filter size of , the disparity map less noisier than
that before cost aggregation but still with a high error
of 39%. After constant SGM optimization, the average
3 px error is 25%; while using linear SGM, we can get
the error down to 12%. The results are summarized in
Table 2.

In Figure 5 (c), we show an example of disparity
map estimated using the traditional method. The
disparity map is very noisy, with a 3 px error of 80%.

In addition, the algorithm fails for textureless regions,
as can be seen from the disparity value for the road. It
also fails for the shadow on the walls, where there is a
jump in the luminance of the image. We also notice
that for reflective surfaces, the accuracy of disparity
estimation is poor, for example, for the car in front.
The disparity estimation is also difficult for regions

with jumps in disparity (e.g., the leaves on the trees)
and occlusions (e.g., the row of cars on the right).

The disparity map after cost aggregation is shown in
Figure 5 (d), with an error of 48%. The noise in the
disparity map is reduced but the problems we mention
above still exist. Then we use SGM with constant
penalty to further optimize the disparity, as shown in
Figure 5 (e), with 36% error. The accuracy of
textureless regions and the shadow is improved. SGM
with linear penalty can greatly reduce the error to 23%,
as shown in Figure 5 (f). Compared to the result of
constant SGM, the disparity estimation for the regions
with jumps in disparity is improved.

For deep learning stereo matching, we have trained
the networks Net1 and Net2 as described in Figure 1.
For Net1, the average 3 px error is 5.9%. The deep
learning method, even without cost aggregation and
SGM, has much better accuracy than the traditional
method. With average filtering with a filter size of

, the 3 px error is reduced slightly to 5.6%. When
constant or linear SGM is applied, we get a 3 px error
of 4.7% or 4.3%, respectively.

5 × 5

7 × 7

5 × 5

5

Figure 4. An example of disparity estimation for Tsukuba
scene.

Table 2. 3 pixel error of disparity estimation for different
methods.

3px error Raw After
average
filtering

After
constant
SGM

After
linear
SGM

Traditional 81% 39% 25% 12%

Net1 5.9% 5.6% 4.7% 4.3%

Net2 6.0% 5.7% 4.9% 4.4%

Net1
(Laplacian)

5.9% 5.6% 4.8% 4.6%

An example of the estimated disparity map with
Net1 is shown in Figure 5 (g), showing 21% error
without CA and SGM. The region with reflective
surfaces and occlusions, for example the cars, shows
some big error. The disparity map after applying
average filtering is shown in Figure 5 (h), with an error
of 20%. We find that average pooling indeed clears out
some noise in the disparity map but the accuracy of
disparity estimation does not improve much. We
further apply a linear SGM in Figure 5 (i), which
shows an error of 14%. The discontinuity in the
disparity map represented by the random variations are
removed. We can see that the result is more accurate
than the result of traditional method in Figure 5 (f),
especially in the region with reflective surfaces.

The example we discuss above is a difficult case for
disparity estimation. The easiest case in the dataset is
shown in Figure 6. Here, there is no difficulties caused
by occlusions or jumps in disparity. The result of Net1
with average filtering and SGM shows a 3px error of
2.02%, while the traditional method shows an error of
2.5%. Thus, for a simple case, the traditional method
can achieve a comparable accuracy with the deep
learning method.

The other deep learning model (Net2) with dilation
and fewer layers gives a comparable 3 px error of 5.7%
when cost aggregation is applied, and an error of 4.4%
with cost aggregation and SGM with linear penalty.
The accuracy is comparable to Net1, while the training
time is reduced by a factor of 2. An example of the

6

Figure 5. Examples of ground-truth and estimated disparity maps from KITTI2015 dataset.

disparity map is shown in Figure 5 (j). Comparing
figures (h) and (j), we can see that the results is similar
for the two different CNN architectures.

When we use a smooth Laplacian target distribution
instead of the discrete distribution for training the
network Net1, the average 3 px error is 5.6% with
average filtering, which is almost the same as the case
of discrete target distribution. The error using linear
SGM is 4.6%, slightly larger than 4.3% for discrete
target distribution.

5. Discussion and future work
 We have implemented two stereo matching
algorithms: a deep learning method and a traditional
method with a matching cost of absolute difference.
We have shown that the deep learning method of
matching cost computation is more computational
efficient for testing than the traditional method, but
requires pre-training, unlike traditional methods. The
deep learning method has better accuracy than the
traditional method, especially for the difficult
situations, for example, pictures with occlusions and
reflective surfaces. For simple cases, traditional
method can provide comparable accuracy. We have
implemented the cost aggregation step using average
filtering. We have also implemented the disparity
optimization step using semi-global matching, which
enforces smoothness constraint to the disparity map.
 Two different structures of networks (Net1 and
Net2) were trained and tested. The architecture Net2
makes use of dilated convolution to reduce the
computational cost without compromising the
performance of the network. We also find that the
convergence with a smooth target distribution is
slightly faster than that with a discrete target
distribution.
 It can be seen that that the disparity map may still
contain errors due to occlusions or invalid matches,
even after cost aggregation and disparity optimization.
For future work, we would like to implement the
disparity refinement step to get more accuracy
estimation. We notice that the most time consuming
part in our implementation is the SGM step for cost
optimization. In the future, we will modify our
implementation to improve the computational
efficiency of SGM. To improve the network training,
we would like to use a larger dataset for training.

References

1. Bai C, Ma Q, Hao P, Liu Z, Zhang J. Improving
stereo matching algorithm with adaptive cross-
scale cost aggregation. International Journal of

Advanced Robotic Systems. January 2018.
doi:10.1177/1729881417751544.

2. Sangeetha, G.R., Kumar, N., Hari, P.R.,
Sasikumar, S., 2018. Implementation of aStereo
vision based system for visual feedback control of
Robotic Arm for spacemanipulations. Proc.
Comput. Sci. 133, 1066–1073.https://doi.org/
10.1016/j.procs.2018.07.031.

3. Hamzah, R.A., Ibrahim, H.,. Literature survey on
stereo vision disparity map algorithms. J. Sensors
2016. https://doi.org/10.1155/2016/8742920

4. Y. Boykov, O. Veksler, and R. Zabih, Fast
Approximate Energy Minimization via Graph
Cuts, November 2001, pp. 1222-1239, vol.
23, doi:10.1109/34.969114

5. Hirschmuller H. Stereo processing by semiglobal
matching and mutual information[J]. IEEE
Transactions on pattern analysis and machine
intelligence, 2008, 30(2): 328-341.

6. Zbontar and Y. LeCun. Computing the stereo
matching cost with a convolutional neural
network. In CVPR, 2015.

7. Chen, J., Yuan, C., 2016. Convolutional neural
network using multi-scale information for stereo

7

Figure 6. An example from KITTI2015 dataset that is an
easy case for disparity estimation.

https://doi.org/10.1016/j.procs.2018.07.031
https://doi.org/10.1016/j.procs.2018.07.031
https://doi.ieeecomputersociety.org/10.1109/34.969114

matching cost computation. In: Proc. – Int. Conf.
Image Process. ICIP 2016-Augus, 3424–3428.
https://doi.org/10.1109/ICIP.2016.7532995.

8. W. Luo, A. G. Schwing and R. Urtasun, Efficient
Deep Learning for Stereo Matching, 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 2016, pp.
5695-5703, doi: 10.1109/CVPR.2016.614.

9. T. Wang, M. Sun and K. Hu, Dilated Deep
Residual Network for Image Denoising, 2017
IEEE 29th International Conference on Tools with
Artificial Intelligence (ICTAI), Boston, MA, 2017,
pp. 1272-1279.

10. A. Geiger, P. Lenz, and R. Urtasun. Are we ready
for autonomous driving? the kitti vision
benchmark suite, CVPR, 2012.

11. https://lmb.informatik.uni-freiburg.de/resources/
datasets/SceneFlowDatasets.en.html

8

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html

	Introduction
	Convolutional network for stereo matching and comparison with traditional methods
	Related work
	Approach
	Experiments
	Discussion and future work
	We have implemented two stereo matching algorithms: a deep learning method and a traditional method with a matching cost of absolute difference. We have shown that the deep learning method of matching cost computation is more computational efficient for testing than the traditional method, but requires pre-training, unlike traditional methods. The deep learning method has better accuracy than the traditional method, especially for the difficult situations, for example, pictures with occlusions and reflective surfaces. For simple cases, traditional method can provide comparable accuracy. We have implemented the cost aggregation step using average filtering. We have also implemented the disparity optimization step using semi-global matching, which enforces smoothness constraint to the disparity map.
	Two different structures of networks (Net1 and Net2) were trained and tested. The architecture Net2 makes use of dilated convolution to reduce the computational cost without compromising the performance of the network. We also find that the convergence with a smooth target distribution is slightly faster than that with a discrete target distribution.
	It can be seen that that the disparity map may still contain errors due to occlusions or invalid matches, even after cost aggregation and disparity optimization. For future work, we would like to implement the disparity refinement step to get more accuracy estimation. We notice that the most time consuming part in our implementation is the SGM step for cost optimization. In the future, we will modify our implementation to improve the computational efficiency of SGM. To improve the network training, we would like to use a larger dataset for training.
	References

